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Abstract 

Background  Growing evidence has demonstrated that DNA methylation (DNAm) plays an important role in Alzhei-
mer’s disease (AD) and that DNAm differences can be detected in the blood of AD subjects. Most studies have cor-
related blood DNAm with the clinical diagnosis of AD in living individuals. However, as the pathophysiological process 
of AD can begin many years before the onset of clinical symptoms, there is often disagreement between neuropa-
thology in the brain and clinical phenotypes. Therefore, blood DNAm associated with AD neuropathology, rather than 
with clinical data, would provide more relevant information on AD pathogenesis.

Methods  We performed a comprehensive analysis to identify blood DNAm associated with cerebrospinal fluid (CSF) 
pathological biomarkers for AD. Our study included matched samples of whole blood DNA methylation, CSF Aβ42, 
phosphorylated tau181 (pTau181), and total tau (tTau) biomarkers data, measured on the same subjects and at the same 
clinical visits from a total of 202 subjects (123 CN or cognitively normal, 79 AD) in the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) cohort. To validate our findings, we also examined the association between premortem blood 
DNAm and postmortem brain neuropathology measured on a group of 69 subjects in the London dataset.

Results  We identified a number of novel associations between blood DNAm and CSF biomarkers, demonstrating 
that changes in pathological processes in the CSF are reflected in the blood epigenome. Overall, the CSF biomarker-
associated DNAm is relatively distinct in CN and AD subjects, highlighting the importance of analyzing omics data 
measured on cognitively normal subjects (which includes preclinical AD subjects) to identify diagnostic biomarkers, 
and considering disease stages in the development and testing of AD treatment strategies. Moreover, our analysis 
revealed biological processes associated with early brain impairment relevant to AD are marked by DNAm in the 
blood, and blood DNAm at several CpGs in the DMR on HOXA5 gene are associated with pTau181 in the CSF, as well as 
tau-pathology and DNAm in the brain, nominating DNAm at this locus as a promising candidate AD biomarker.

Conclusions  Our study provides a valuable resource for future mechanistic and biomarker studies of DNAm in AD.
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Introduction
Late-onset Alzheimer’s disease (LOAD), affecting about 1 
in 9 people 65 years and older in the USA [1], has become 
a major public health problem and one of the most finan-
cially costly diseases [2]. Clinically, Alzheimer’s disease 
(AD) is characterized by progressive deterioration of cog-
nitive functions, eventually leading to a lack of ability to 
carry out even the simplest tasks, which places significant 
emotional, financial, and physical burdens on caregivers. 
Growing evidence has demonstrated that DNA meth-
ylation (DNAm), a widely studied epigenetic mecha-
nism that modifies gene expression without changing 
the underlying DNA sequences, plays an important role 
in AD [3–5]. In particular, recent studies have identified 
and replicated a number of DNAm loci in the brain (e.g., 
ANK1, RHBDF2, and HOXA) that are robustly associ-
ated with AD neuropathology [6–10]. Encouragingly, it 
has become increasingly evident that DNAm differences 
can also be detected in the blood of AD subjects [11–16]. 
Most recently, our meta-analysis of two large clinical AD 
datasets revealed a number of DNAm loci in the blood 
significantly associated with AD diagnosis [17].

Given that it still is not practical to obtain methylation 
levels in brain tissues from living human subjects, most 
studies have correlated blood DNAm with AD diagnosis. 
However, as the pathophysiological process of AD can 
begin many years before the onset of clinical symptoms 
[18, 19], there is often disagreement between neuropa-
thology and clinical phenotypes [20, 21]. Currently, there 
is still limited knowledge on the association of blood 
DNAm with changes in AD neuropathology.

CSF biomarkers are well-established AD endopheno-
types, and their abnormality is predictive of the onset 
and progression of AD [22–27]. Encouragingly, premor-
tem CSF biomarker values also correlate significantly 
with neuropathology scores measured on postmortem 
brain samples [28]. The hallmark of AD is the accumula-
tion of aggregated amyloid and tau proteins in the brain. 
Under the AT(N) framework [29, 30], cerebrospinal fluid 
(CSF) levels of Aβ42, phosphorylated tau at threonine 181 
(pTau181), and total tau corresponds to the accumulation 
of Aβ plaque (A), fibrillary tau (T), and non-disease-spe-
cific neurodegeneration (N), respectively.

In this study, we performed a comprehensive analy-
sis to identify blood DNA methylation associated with 
CSF biomarkers in the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI) cohort. In addition to a greater 
understanding of the regulatory changes associated with 
different pathological disease-associated processes in liv-
ing individuals, compared to previous analyses that used 
clinical AD diagnosis as the endpoint, we also expected 
this analysis of CSF biomarkers, which are quantitative 
measurements, would help with improving statistical 

power. To prioritize the significant CSF biomarker-asso-
ciated DNAm, we performed several integrative analyses 
that additionally included gene expression and genet-
ics data, as well as a validation analysis which analyzed 
the London dataset with both premortem blood DNAm 
and postmortem brain neuropathology measured on a 
group of 69 subjects. Results from this study provide an 
improved understanding of the epigenetics underlying 
inter-individual variations in various pathological path-
ways involved in AD.

Methods
Study dataset
The ADNI is a longitudinal study that aims to define 
the progression of AD [31]. To create a dataset with 
independent samples, we only analyzed the last visit 
data of each subject from the longitudinal ADNI study. 
Our blood sample dataset included 202 DNA meth-
ylation samples (123 cognitively normal (CN) samples 
and 79 AD samples) with available CSF biomarkers 
information (Aβ42, phosphorylated tau181, and total 
tau) measured on the same subject at the same clini-
cal visit in the ADNI study. To avoid the inclusion of 
early-onset AD subjects, only subjects older than 
65 years of age were included. The study datasets can 
be accessed from the ADNI study website (adni.loni.
usc.edu). Sample characteristics for the CN and AD 
groups were compared using Fisher’s exact test for cat-
egorical variables and the Wilcoxon rank sum test for 
continuous variables.

Pre‑processing of DNA methylation data
The DNA methylation samples were measured with 
the Illumina HumanMethylation EPIC beadchip, which 
includes more than 850,000 CpGs. Supplementary Table 1 
shows the number of probes and samples removed at each 
step of quality control (QC). For the QC of probes, we first 
selected probes with a detection P-value < 0.01 in every 
sample. A small detection P-value (i.e., P-value < 0.01) 
indicates a significant difference between the signals in 
the probe and the background noise. Next, using the 
rmSNPandCH function from the DMRcate R package, 
we removed probes that are cross-reactive [32], located 
close to single nucleotide polymorphism (SNPs) (i.e., an 
SNP with minor allele frequency (MAF) ≥ 0.01 was pre-
sent in the last five base pairs of the probe), or located on 
X or Y chromosomes. QC for samples included restrict-
ing our analysis to samples with good bisulfite conversion 
efficiency (i.e., ≥ 85%). In addition, principal component 
analysis (PCA) was used to remove the outlier samples. 
Specifically, PCA was performed using the 50,000 most 
variable CpGs, and we selected samples within ± 3 stand-
ard deviations from the mean of the first PC and second 
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PC. Finally, we excluded samples without matching clini-
cal or CSF biomarkers information.

The quality-controlled methylation samples were then 
subjected to the QN.BMIQ normalization procedure 
[33], which included between-array quantile normaliza-
tion (QN) followed by within-array β-mixture quantile 
normalization (BMIQ) [34]. For the QN step, we used the 
betaqn function in the wateRmelon R package (version 
1.99.1) to remove systematic effects between samples. 
For the BMIQ procedure, which is also implemented in 
the wateRmelon R package, the distributions of beta val-
ues measured by type 1 and type 2 design probes were 
normalized within each Illumina array.

Immune cell type proportions, including B lym-
phocytes, natural killer cells, CD4 + T lymphocytes, 
monocytes, and granulocyte, were estimated using the 
EpiDISH R package (version 2.12.0) [35]. Here, the gran-
ulocyte proportions were computed as the sum of neu-
trophils and eosinophils proportions since neutrophils 
and eosinophils are classified as granular leukocytes, as 
previously described [36, 37].

CSF biomarkers
We obtained information for CSF biomarkers ( Aβ42 , 
pTau181 , and tTau), which were measured by Roche 
Elecsys immunoassay, from the “UPENNBIOMK9.
CSV” file at the ADNI website (adni.loni.usc.edu). 
Standardized CSF biomarkers values were computed 
by log (base 2)-transformation followed by centering 
using the study means, as in previous analyses of CSF 
biomarkers [38, 39].

Identification of CSF biomarker‑associated CpGs
To assess the associations between CSF biomarkers 
( Aβ42 , pTau181 , and tTau) and DNA methylation, we 
fitted the following linear regression model (Model 1) 
to CN and AD samples separately: standardized CSF 
biomarker ~ methylation.beta +  age +  methylation 
plate + sex + APOE4 + years of education + smoking 
history + immune cell-type proportions (B, NK, CD4T, 
Mono, Gran).

We also compared the effects of methylation-to-CSF 
biomarker associations in CN samples and AD samples, 
by fitting the following model (Model 2) to combined CN 
and AD samples: standardized CSF biomarker ~ meth-
ylation.beta + diagnosis + methylation.beta × diagno-
sis + age + methylation plate + sex + APOE4 + years of 
education + smoking history + immune cell-type propor-
tions (B, NK, CD4T, Mono, Gran). Significant methyla-
tion.beta × diagnosis interaction effect corresponds to a 
significant difference in methylation-to-CSF biomarker 
associations in the CN samples and AD samples.

Inflation assessment and correction
We estimated genomic inflation factors (lambda val-
ues) using both the conventional approach [40] and 
the bacon method [41], which is specifically pro-
posed for a more accurate assessment of inflation in 
EWAS. Supplementary Table  2 shows the estimated 
inflation and bias of the test statistics from Model 1 
described above. Specifically, lambda values (λ) by the 
conventional approach ranged from 0.719 to 1.096, 
and lambdas based on the bacon approach (λ.bacon) 
ranged from 0.863 to 1.019. The estimated bias ranged 
from − 0.097 to 0.117. Genomic correction using the 
bacon method [41], as implemented in the bacon R 
package, was then applied to obtain bacon-corrected 
effect sizes, standard errors, and P-values for each 
dataset to obtain a more accurate estimate of statis-
tical significance. After bacon correction, the esti-
mated bias ranged from − 0.002 to 0.002, the estimated 
inflation factors ranged from λ = 0.967 to 1.042, and 
λ.bacon ranged from 0.974 to 1.000.

For each CSF biomarker, we considered CpGs with a 
false discovery rate (FDR) ≤ 0.05 as statistically signifi-
cant. Given the modest number of samples with both 
DNA methylation and CSF biomarker measurements, 
we expected our analysis to be underpowered. Therefore, 
based on our experiences and previous studies in the 
analysis of EWAS measured in blood [37, 42, 43], we also 
prioritized CpGs with suggestive significance at the pre-
specified significance threshold P-value < 1× 10−5.

Differentially methylated regions (DMR) analysis
To identify the differentially methylated regions associ-
ated with CSF biomarkers, we used the comb-p software 
[44]. Briefly, comb-p takes single CpG P-values and loca-
tions of the CpG sites to scan the genome for regions 
enriched with a series of adjacent low P-values. In our 
analysis, we used the bacon-corrected P-values from 
Model 1 above as the input, and the parameter setting 
–seed 0.05 and –dist 750 (a P-value of 0.05 is required 
to start a region and extend the region if another P-value 
was within 750 base pairs), which was shown to have 
optimal statistical properties in our previous compre-
hensive assessment of the comb-p software [45]. As 
comb-p uses the Sidak method to correct P-values for 
multiple comparisons, we considered DMRs with Sidak-
adjusted P-value < 0.05 as significant. To further reduce 
false positives, we imposed two additional criteria in 
our final selection of DMRs: (1) DMRs with nominal 
P-value < 1 × 10−5; (2) all CpGs within the DMR have a 
consistent direction of change in estimated effect sizes 
from Model 1 described above.
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Functional annotation of significant methylation 
associations
The significant methylation at individual CpGs and 
DMRs was annotated using both the Illumina (UCSC) 
gene annotation and Genomic Regions Enrichment 
of Annotations Tool (GREAT) software which associ-
ates genomic regions to target genes [46]. To assess the 
overlap between our significant CpGs and DMRs (CpG 
or DMR location ± 250  bp) with enhancers, we used 
enhancer–gene maps generated from 131 human cell 
types and tissues described in Nasser et  al. (2021) [47] 
(https://​www.​engre​itzlab.​org/​resou​rces/). Specifically, we 
selected enhancer-gene pairs with “positive” predictions 
from the ABC model, which included only expressed tar-
get genes, did not include promoter elements, and had 
an ABC score higher than 0.015. In addition, we also 
required that the enhancer-gene pairs be identified in 
cell lines relevant to this study (https://​github.​com/​Trans​
BioIn​foLab/​AD-​meta-​analy​sis-​blood/​blob/​main/​code/​
annot​ations/).

Pathway analysis
To identify biological pathways enriched with CSF 
biomarker-associated DNA methylation, we used the 
methylRRA function in the methylGSA R package [48] 
(version 1.14.0). The pathway analyses were performed 
separately for each of the three CSF biomarkers, and 
the most significant P-value among the 3 P-values (one 
for each CSF biomarker) was then selected as the final 
P-value for each pathway. In each analysis, we used 
the bacon-corrected P-values from Model 1 described 
above as the input for methylGSA. Briefly, methylGSA 
first computes a gene-wise ρ value by aggregating P-val-
ues from multiple CpGs mapped to each gene. Next, the 
different number of CpGs on each gene is adjusted by 
Bonferroni correction. Finally, a Gene Set Enrichment 
Analysis [49] (in pre-rank analysis mode) is performed 
to identify pathways enriched with significant CSF-
associated DNAm. We analyzed pathways in the KEGG 
[50] and REACTOME [51] databases. Because of the 
relatively smaller number of gene sets being tested, a 
25% FDR significance threshold, instead of the conven-
tional 5% FDR, was suggested to be the default signifi-
cance threshold for GSEA (https://​softw​are.​broad​insti​
tute.​org/​cancer/​softw​are/​gsea/​wiki/​index.​php/​FAQ). 
Therefore, we considered pathways with FDR < 0.25 as 
statistically significant.

Integrative methylation‑to‑gene expression analysis
To evaluate the DNA methylation effect on the gene 
expression of nearby genes, we analyzed matched gene 
expression (Affymetrix Human Genome U 219 array) 
and DNA methylation (EPIC array) data from 263 

independent subjects in the ADNI study (adni.loni.usc.
edu). To reduce the effect of potential confounding, 
when testing methylation-to-gene expression associa-
tions, we first adjusted age at visit, sex, immune cell-type 
proportions (for B lymphocytes, natural killer cells, 
CD4 + T lymphocytes, monocytes, granulocytes), batch 
effects, number of APOE4 alleles, smoking history, and 
years of education in both DNA methylation and gene 
expression levels separately and extracted residuals 
from the linear models. Immune cell-type proportions 
were estimated using the R packages EpiDISH [35] and 
Xcell [52] (https://​github.​com/​dvira​ran/​xCell) for DNA 
methylation and gene expression data, respectively. A 
separate linear model was then used to test for the asso-
ciation between methylation residuals and gene expres-
sion residuals, separately for CN and AD samples. For 
the analysis of DMRs, we summarized each DMR by the 
median methylation value of all CpGs mapped within the 
DMR, and then fitted the linear models described above, 
by replacing the methylation value for the CpG with the 
median methylation value for the DMR.

Correlation and overlap with genetic susceptibility loci
We searched mQTLs using the GoDMC database [53], 
which was downloaded from http://​mqtldb.​godmc.​org.​
uk/​downl​oads. To select significant blood mQTLs in 
GoDMC, we used the same criteria as the original study 
[53], that is, considering a cis P-value smaller than 10−8 
and a trans-P-value smaller than 10−14 as significant. The 
24 LD blocks of genetic variants reaching genome-wide 
significance were obtained from Supplementary Table  8 
of Kunkle et  al. (2019) [54]. The CSF biomarker-associ-
ated genetic loci were obtained from Supplementary 
Tables 2–4 of Deming et al. (2017) [38].

Sensitivity analysis
Immune cell type proportions were estimated using the 
IDOL algorithm [55], as implemented in the estimate-
CellCounts2 function in the R package FlowSorted.
Blood.EPIC. We then fitted the same linear models 
described in “Identification of CSF biomarker-associated 
CpGs” above, except by replacing cell type proportions 
estimated by EpiDISH method with those estimated by 
IDOL algorithm.

Validation analysis using an independent dataset
The London dataset [7, 56], which consists of DNAm 
measured on premortem whole blood samples from 
69 subjects, along with their postmortem neurofibril-
lary tangle burden as measured by AD Braak stage [57], 
as well as DNAm measured on the brain prefrontal cor-
tex at autopsy, was downloaded from the GEO database 
(accession number: GSE29685). The blood and brain 

https://www.engreitzlab.org/resources/
https://github.com/TransBioInfoLab/AD-meta-analysis-blood/blob/main/code/annotations/
https://github.com/TransBioInfoLab/AD-meta-analysis-blood/blob/main/code/annotations/
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https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/FAQ
https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/FAQ
https://github.com/dviraran/xCell
http://mqtldb.godmc.org.uk/downloads
http://mqtldb.godmc.org.uk/downloads
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DNAm samples from the London dataset were pre-pro-
cessed in the same way as described above. Given the rel-
atively modest number of samples at some of the Braak 
stages, we modeled the Braak stage as a binary variable, 
with absent/low (Braak scores of 0, 1, 2) vs. intermediate/
high (Braak scores 3–6) neurofibrillary tangle tau pathol-
ogy, as previously described [28]. Specifically, to test the 
association between premortem blood DNAm and post-
mortem AD Braak stage, we fitted the model methyla-
tion M value ~ Braak stage (absence/low vs. intermediate/
high) + sex + age at blood draw + batch. In the London 
dataset, none of the estimated blood cell-type propor-
tions were significantly associated with the Braak stage 
(Supplementary Fig. 1), so they were unlikely to be con-
founding factors; therefore, we did not include them in 
the above linear model. To assess concordance between 
brain and blood DNAm at each CpG within the DMR 
located on the HOXA5 gene, we computed Spearman 
correlations.

Results
Sample characteristics
To identify DNA methylation associated with CSF bio-
markers, we studied matched whole blood DNA meth-
ylation, CSF Aβ42, phosphorylated tau181 (pTau181), 
and total Tau (tTau) biomarkers data measured on 
the same subjects and at the same clinical visits in the 
ADNI study [31, 37]. Our study included samples from 
a total of 202 subjects (123 cognitively normal, 79 AD 
cases). Table  1 shows the demographic information of 
these subjects. There were no significant differences in 

age, sex, smoking history, and educational attainment 
between the cognitively normal (CN) and AD sub-
jects. Overall, the majority of the subjects are in their 
seventies (with an average age of 76.6), are highly edu-
cated (with an average of 16  years of education), and 
are fewer than half of the subjects smoked. Compared 
to CN subjects, the AD subjects have a higher propor-
tion of APOE ɛ4 carriers (71% in AD vs. 25% in CN). 
Moreover, CSF Aβ42 levels were significantly lower in 
AD subjects, while CSF pTau181 and tTau levels were 
significantly higher in AD subjects. Finally, Mini-Men-
tal State Examination (MMSE) scores were significantly 
lower in AD subjects (an average of 22 points in AD vs. 
an average of 29 points in CN), indicating more cogni-
tive dysfunction.

DNA methylation in the blood is significantly associated 
with CSF biomarkers at individual CpGs and genomic 
regions
To identify DNAm differences associated with CSF 
biomarkers at different stages of the disease, we ana-
lyzed CN and AD samples separately. Supplementary 
Table  3 presents a summary of the significant CpGs 
and DMRs. In CN samples, after adjusting covari-
ate variables (age, sex, batch effects, years of edu-
cation, number of APOE4 alleles, smoking history, 
immune cell-type proportions), and correcting for 
genomic inflation in each dataset, we identified 1 CpG 
cg06171420, located in the vicinity of PCBP3 gene, 
significantly associated with CSF levels of total tau 
(tTau) at 5% false discovery rate (FDR) (Supplementary 

Table 1  Sample characteristics of the study dataset
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Fig. 1  Miami plot for CpGs significantly associated with CSF Aβ42 in the ADNI cohort. The X-axis shows chromosome numbers. The Y-axis shows 
–log10 (P-value) of methylation-to-CSF Aβ42 association in cognitively normal (CN) subjects, or Alzheimer’s disease (AD) subjects. The genes 
associated with the 20 most significant CpGs per subject group are highlighted. The red line indicates P-value < 10−5 significance threshold

Fig. 2  Miami plot for CpGs significantly associated with CSF phosphorylated tau181 (pTau181) in the ADNI cohort. The X-axis shows chromosome 
numbers. The Y-axis shows –log10 (P-value) of methylation- to-CSF pTau181 association in cognitively normal (CN) subjects, or Alzheimer’s disease 
(AD) subjects. The genes associated with the 20 most significant CpGs per subject group are highlighted. The red line indicates the P-value < 10−5 
significance threshold
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Table  4). At P-value < 1 × 10−5, we identified an addi-
tional 34, 15, and 11 CpGs significantly associated with 
CSF Aβ42, pTau181, and tTau levels, respectively (Figs. 1 
and 2, Tables  2 and 3, Supplementary Table  4, 5,  6). 
Similarly, the analysis of AD samples revealed 125, 
21, and 14 CpGs significantly associated with Aβ42, 
pTau181, and tTau at P-value < 1 × 10−5, respectively, 
among which 112, 4, and 3 CpGs also achieved 5% 
FDR. The greater number of DNAm with significant 
associations to Aβ42 than tau (Supplementary Fig.  2) 
might be due to CSF Aβ42 reduction occurring earlier 
in the disease process and thus is associated with more 
pervasive epigenetic effects.

Among these 198 significant CSF biomarker-associated 
CpGs in either CN or AD samples, the majority (61% or 
120 CpGs) were negatively associated with increased lev-
els of AD biomarkers; about two-thirds were located in 
distal regions of genes (65% or 129 CpGs); about half of 
the significant CpGs (51% or 100 CpGs) were located in 
CpG islands or shores, and only about a third of them 

were located in gene promoter regions (Supplementary 
Tables 4, 5 and 6).

At 5% Sidak adjusted P-value, comb-p software iden-
tified 81, 18, and 24 differentially methylated regions 
(DMRs) in CN samples, and 57, 15, and 13 DMRs in 
AD samples, which were significantly associated with 
Aβ42, pTau181, and tTau, respectively (Tables  4 and 5, 
Supplementary Tables  7-9). The number of CpGs in 
these DMRs ranged from 3 to 23. Among these 184 
DMRs that were significant in either CN or AD sam-
ples analysis (Supplementary Table 3), about half (58%, 
107 DMRs) were negatively associated with increased 
levels of AD biomarkers; about half of the DMRs (59%, 
109 DMRs) were located in promoter regions; and 
the majority (80% or 147 DMRs) were located in CpG 
island or shores. Only a very small number of CpGs (16 
CpGs), representing 8% of the total significant CpGs, 
overlapped with a small number of DMRs (14 DMRs) 
(Supplementary Fig. 3). Interestingly, among the signifi-
cant CpGs and DMRs, 18% CpGs (36 CpGs) and 32% 
DMRs (59 DMRs) also overlapped enhancer regions 

Table 2  Top 10 most significant CpGs associated with CSF Aβ42 in cognitively normal (CN) and Alzheimer’s disease (AD) subjects. 
Annotations include the location of the CpG based on hg19/GRCh37 genomic annotation (chr, position) and nearby genes based on 
GREAT (GREAT_annotation). Regression analysis results for CpG-to-CSF Aβ42 association include effect estimate, standard error (se), and 
P-values after inflation correction using the bacon method (PMID: 28129774). Highlighted in red are gene promoter regions mapped 
to significant CpGs
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(Supplementary Tables 4–9), which are regulatory DNA 
sequences that transcription factors bind to activate 
gene expressions [47, 58].

Blood DNAm associated with CSF biomarkers differed 
between diagnosis groups
Overall, we found the DNAm associated with CSF bio-
markers were relatively distinct across diagnosis groups. 
Specifically, there was no overlap between the significant 
CpGs in AD samples and CN samples (Supplementary 
Fig. 2). Among the 184 significant DMRs that were signif-
icant in either CN or AD sample analysis (Supplementary 
Table  3), only 3 DMRs (chr15:69,744,390–69,744,763, 
chr6:30,130,819–30,131,284, and chr6:30,130,819–
30,131,362), all of which are CSF Aβ42 associated-DMRs, 
were significant in both CN and AD samples. Consist-
ent with this result, there was only a modest and non-
significant correlation between estimated effect sizes of 
CpG-to-CSF biomarker associations in CN samples vs. 
those in AD samples among significant CpGs (Spearman 
ρ = 0.10, 0.06, 0.18 for Aβ42, pTau181, and tTau-associated 

CpGs, respectively) (Supplementary Fig.  4). Moreover, 
our interaction model (Model 2 in Methods), which ana-
lyzed the combined CN and AD samples, showed that for 
the majority of the significant CpGs in CN or AD sample 
analysis (70% or 139 out of a total of 198 CpGs) (Supple-
mentary Tables 4–9), the DNAm × diagnosis interaction 
effect was significant, indicating significant different 
DNAm-to-CSF biomarker associations in the two groups.

Pathway analysis revealed DNA methylation associated 
with CSF biomarkers is enriched in a number of biological 
pathways in cognitively normal and AD subjects
To better understand biological pathways enriched 
with significant CSF biomarkers-associated DNA 
methylation, we next performed pathway analy-
sis using the methylGSA software [48]. At 25% FDR 
(Methods), a total of 89 and 13 pathways were sig-
nificant in CN and AD samples, respectively (Supple-
mentary Table 10). Among them, 3 pathways (calcium 
signaling pathway, regulation of actin cytoskeleton, 
neuroactive ligand-receptor interaction) also reached 

Table 3  Top 10 most significant CpGs associated with CSF phosphorylated tau181 (pTau181) in cognitively normal (CN) and Alzheimer’s 
disease (AD) subjects. Annotations include the location of the CpG based on hg19/GRCh37 genomic annotation (chr, position) and 
nearby genes based on GREAT (GREAT_annotation). Regression analysis results for CpG-to-CSF pTau181 association include effect 
estimate, standard error (se), and P-values after inflation correction using the bacon method (PMID: 28129774). Highlighted in red are 
gene promoter regions mapped to significant CpGs
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Table 4  Top 10 most significant DMRs associated with CSF Aβ42 in cognitively normal (CN) and Alzheimer’s disease (AD) subjects. 
For each DMR, annotations include the location of the DMR based on hg19/GRCh37 genomic annotation (chr, start, end) and nearby 
genes based on GREAT (GREAT_annotation). Direction indicates a positive or negative association between DNA methylation at a CpG 
located within the DMR and CSF biomarker. Highlighted in red are gene promoter regions mapped to significant DMRs

Table 5  Top 10 most significant DMRs associated with CSF phosphorylated tau181 (pTau181) in cognitively normal (CN) subjects and 
Alzheimer’s disease (AD) subjects. For each DMR, annotations include the location of the DMR based on hg19/GRCh37 genomic 
annotation (chr, start, end), and nearby genes based on GREAT (GREAT_annotation). Direction indicates a positive or negative 
association between DNA methylation at a CpG located within the DMR and CSF biomarker. Highlighted in red are gene promoter 
regions mapped to significant DMRs
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5% FDR in CN samples, and 2 pathways (cardiac con-
duction and muscle contraction) also reached 5% FDR 
in AD samples.

We next examined the overlap between significant path-
ways identified in CN samples and AD samples. Among 
the 95 pathways that reached 25% FDR in either CN or 
AD samples, only 7 pathways (7.4%) were significant 
in both groups (Supplementary Table  10). These seven 
pathways are regulation of actin cytoskeleton, neuroactive 
ligand-receptor interaction, ubiquitin mediated, proteoly-
sis, Wnt signaling pathway, MAPK signaling pathway, car-
diac conduction, and muscle contraction. We also found 
pathway enrichment of the significant CSF biomarker-
associated CpGs to be independent in CN samples and 
AD samples (Supplementary Fig. 5). These pathway analy-
sis results are consistent with those described above for 
individual CpGs, in which we observed little correlation 
between estimated effect sizes of CpG-to-CSF biomarkers 
associations in CN and in AD.

Correlation of DNA methylation at significant CSF 
biomarker‑associated CpGs and DMRs with expressions 
of nearby genes
To prioritize significant DNAm with downstream func-
tional effects, we next correlated DNA methylation lev-
els of the significant DMRs or CpGs with the expression 
levels of genes found in their vicinity, using matched 
DNAm and gene expression samples generated from 263 
independent subjects (84 AD cases and 179 CN) in the 
ADNI cohort. In CN subjects, after removing effects of 
covariate variables in both DNA methylation and gene 
expression levels separately (see the “Methods” section), 
at 5% FDR, we found DNAm at 2 CpGs, and 6 DMRs 
were significantly associated with target gene expression 
levels (Supplementary Table 11). Interestingly, aside from 
1 CpG (cg14074117) located in the intergenic regions, all 
CpGs and DMRs were negatively associated with target 
gene expressions. Among them, 3 DMRs were located 
in gene promoter regions and negatively associated with 
expression levels of the target genes at GSTM5, CAT​, and 
CRISP2. GSTM5 belongs to the Glutathione S-Trans-
ferase family of genes, which encodes enzymes associated 
with oxidative stress in neurodegenerative diseases [59, 
60]. Recently, GSTM5 was observed to be significantly 
downregulated in the primary visual cortex brain tissues, 
an area mildly affected by tau pathology and corresponds 
to the “early” AD transcriptome [61]. This previous find-
ing is consistent with our result that DNAm increases 
with pTau181 and tTau levels and are negatively associated 
with the target gene. Similarly, the CAT​ gene encodes 
catalase, another key antioxidative enzyme that miti-
gates oxidative stress [62]. Defects in catalase have been 

implicated in a number of neurological disorders, includ-
ing AD [63].

On the other hand, in AD samples, we found DNAm 
at 5 CpGs and 5 DMRs were significantly associated with 
target gene expression levels. Half of these DNAm (4 
CpGs and 1 DMR) had a negative correlation with tar-
get gene expression. Two DMRs, located in the promoter 
region of the TNNT1 gene, were positively associated 
with the expression level of the TNNT1 gene, which was 
shown to be a marker of central nervous system molecu-
lar stress associated with neuropsychiatric diseases [64]. 
Our results are consistent with previous observations 
that DNAm at some promoter regions is correlated with 
increased target gene expression [65–68]. While tradi-
tionally promoter methylation is thought to be associated 
with transcriptional silencing by blocking the binding of 
transcription factors (TFs), which are proteins that bind 
DNA to facilitate the transcription of DNA into RNA, 
recent studies suggest more complex patterns of protein–
DNA interaction associated with the DNA methylome 
[69, 70]. In particular, several studies observed that the 
binding and activity of some TFs are enhanced by CpG 
methylation to activate gene expression [71–73]. In addi-
tion, the positive promoter DNAm to target gene asso-
ciation could also be due to a co-regulatory phenomenon 
in which both DNAm and target gene are altered by pro-
teins associated with TFs [53, 69, 74, 75].

Correlation and overlap with genetic susceptibility loci
To identify methylation quantitative trait loci (mQTLs) 
for the significant DMRs and CpGs, we next performed 
look-up analyses using the GoDMC database [53] for 
mQTLs. In CN samples, among the 764 individual CpGs 
or CpGs located within DMRs that are significantly asso-
ciated with the CSF biomarkers, 301 CpGs had mQTLs in 
cis, and 41 CpGs had mQTLs in trans. Similarly, among 
the 610 significant CpGs or CpGs located in the DMRs 
in AD samples, 281 and 55 CpGs had mQTLs in cis and 
in trans, respectively. Among them, 30,127 CpG–mQTL 
pairs, associated with 16 unique CpGs, were significant 
in both CN and AD sample analyses (Supplementary 
Table 12). These results suggested that approximately half 
of the CSF biomarker-associated CpGs are impacted by 
genetic variation, consistent with a recent large mQTL 
meta-analysis of blood samples, which estimated that 
genetic variants influence about 45% of CpGs on the Illu-
mina array [53].

Next, to evaluate if the significant mQTLs in CN and 
AD overlapped with genetic risk loci implicated in AD, 
we compared the mQTLs with the 24 LD blocks of 
genetic variants reaching genome-wide significance in 
a recent meta-analysis of AD GWAS [54]. In CN sam-
ples, we found 1518 mQTLs, associated with DNA 
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methylation at 10 significant CpGs (all of which are 
located in DMRs), overlapped with the LD regions chr 
6:32,395,036–32,636,434, and 19:1,050,130–1,075,979, 
which included genetic variants mapped to HLA-DRA, 
HLA-DRB5, HLA-DRB1, HLA-DQA1, HLA-DQB1 on 
chromosome 6, and ABCA7, ARHGAP45, HMHA1 on 
chromosome 19 (Supplementary Table  13). Similarly, 
in AD samples, we found 41 mQTLs, associated with 
DNA methylation at 9 significant CpGs (all of which 
are located in DMRs), overlapped with the LD regions 
chr 6:32,395,036–32,636,434 and chr 15:58,873,555–
59,120,077, which included genetic variants mapped to 
HLA-DRA, HLA-DRB5, HLA-DRB1, HLA-DQA1, HLA-
DQB1 on chromosome 6, and ADAM10, HSP90AB4P, 
LOC101928725, FAM63B on chromosome 15 (Supple-
mentary Table 14). Our comparison of the mQTLs with 
CSF biomarker-associated genetic loci [38] did not iden-
tify any overlapping variants. These results suggested that 
the majority of the CSF biomarker-associated CpGs, by 
and large, are not influenced by genetic variants at the 
GWAS loci for AD or AD biomarkers. Therefore, even 
though a substantial proportion of the CpGs are influ-
enced by genetic variants, we found no evidence that 
genetic variations might be confounding variables in our 
DNAm to CSF biomarker associations because these 
genetic variations are not significantly associated with 
AD or AD biomarkers.

Finally, we also evaluated if our significant methyla-
tion loci overlapped with the genetic risk loci associ-
ated with AD diagnosis [54] or CSF AD biomarkers 
[38]. However, we found no overlap between the sig-
nificant DNAm discovered in this study compared with 
AD diagnosis or CSF AD biomarker-associated genetic 
risk loci. This result is consistent with a previous study 
which also found no evidence of overlap between sig-
nificant EWAS loci and GWAS loci in a meta-analysis of 
11 blood-based EWAS of neurodegenerative disorders 
[36]. The lack of commonality between genetic and epi-
genetic loci in AD supports previous findings that DNA 
methylation and genetic variants play relatively inde-
pendent roles in AD [4, 76].

Sensitivity analysis
We performed an additional analysis to evaluate the 
robustness of DNAm to CSF biomarker associations 
with regard to different methods for estimating cell type 
proportions. To this end, we estimated immune cell type 
proportions using an alternative method, the IDOL algo-
rithm described in Salas et  al. (2018) [55]. Our results 
show the cell type proportions estimated by the IDOL 
method and the EpiDISH method [35] we used in our 
primary analyses are highly concordant (Supplementary 

Fig.  6). Next, we repeated our DNAm to CSF biomark-
ers association analyses by adjusting cell type propor-
tions estimated by IDOL. Our results showed the blood 
DNAm to CSF biomarker associations obtained by 
adjusting IDOL cell type proportions are largely con-
gruent with our primary analysis results. In particular, 
the Aβ42-associated CpGs and pTau181-associated CpGs 
remained highly significant, with P-values ranging from 
1.10 × 10−10 to 1.81 × 10−4 (Supplementary Table  15), 
and 1.39 × 10−8 to 2.92 × 10−3 (Supplementary Table 16), 
respectively, indicating our results are robust to different 
algorithms for estimating cell type proportions.

Validation analysis using an independent dataset
To validate our findings, we also studied DNAm associ-
ated with brain pathology in an independent dataset. 
To this end, we analyzed DNAm measured on premor-
tem blood samples from 69 subjects, along with their 
postmortem neurofibrillary tangle burden in the brain 
prefrontal cortex determined at autopsy, as measured 
by AD Braak stage [57] in the London dataset [7, 56]. At 
a nominal P-value less than 0.05, a number of CSF bio-
marker-associated CpGs and DMRs that we identified in 
the ADNI dataset are also significantly associated with 
the Braak stage in the London dataset (Supplementary 
Tables 17, 18). These DNAm are located at the ERO1LB, 
MBTPS1, HOXA5, TRIM15, TYW3, MME, HMSD, 
CHAD, SEMA3C genes, and the intergenic regions. Note 
that because CSF Aβ42 decreases and brain tau-pathology 
increases in AD subjects, we selected CpGs or DMRs 
with opposite directions in blood DNAm-to-CSF Aβ42 
and blood DNAm-to-Braak stage associations.

After correcting for multiple comparisons, at Sidak 
adjusted P-value less than 0.05, we observed blood 
DNAm at two DMRs, located on the HOXA5 and CHAD 
genes, were significantly associated with AD Braak stage 
in the London dataset, and overlapped with CSF pTau181 
or Aβ42 associated DMRs in the ADNI dataset. Of par-
ticular interest is the strong replication association sig-
nal located in the promoter region of the HOXA5 gene. 
In ADNI (discovery) dataset, blood DNAm at DMR 
chr7:27,183,946–27,184,668 is significantly associated 
with CSF pTau181 (P-value = 1.06 × 10−6, Sidak-adjusted 
P-value = 1.07 × 10−3); in London (replication) dataset, 
blood DNAm at this locus (at DMR chr7: 27,183,133–
27,184,451) is also significantly associated with Braak 
stage in the brain (P-value = 7.27 × 10−20, Sidak-adjusted 
P-value = 2.49 × 10−17) (Supplementary Table 18). Previ-
ously, Smith et al. (2018) also observed significant hyper-
methylation across the HOXA gene cluster in the brain 
significantly associated with AD Braak stage in the Mt. 
Sinai, London, and ROSMAP brain datasets [8]. Intrigu-
ingly, we also observed significant correlations between 
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brain and blood DNAm at 7 CpGs located within the 
DMR (Supplementary Fig. 7), as well as a significant asso-
ciation between the DMR with target gene expression 
(Supplementary Fig. 8). Together, these results suggested 
the DMR at HOXA5 is a promising biomarker robustly 
associated with tau-pathology in both brain and the 
blood.

Discussion
In this study, we analyzed samples from the CN and 
AD subjects separately, as we reasoned that the CSF 
biomarker-associated DNAm discovered in CN sam-
ples would most likely be associated with AD risk; in 
contrast, after the onset of disease, the CSF biomarker-
associated DNAm in AD samples would most likely be 
associated with both AD risk as well as changes caused 
by AD pathologies that accumulate in the brain. Support-
ing this premise, we found that the significant DNAm 
identified in AD and CN samples were largely distinct 
(Supplementary Fig.  2). There was also little correlation 
between DNAm-to-AD biomarker associations in the 
two groups of subjects, both at the levels of CpGs (Sup-
plementary Fig. 4) and pathways (Supplementary Fig. 5). 
These results suggest that the epigenetics associated with 
different pathological processes in cognitively normal 
subjects (some of which might later proceed to develop 
AD) and AD patients vary, supporting the recommenda-
tion of considering the patients’ disease stage in develop-
ing treatment strategies [77, 78].

Our comprehensive analyses identified a number of 
DNAm differences significantly associated with CSF bio-
markers Aβ42, pTau181, and tTau, many of which were 
associated with genes previously implicated in AD patho-
genesis. Specifically, in the analysis of CN subjects, we 
identified 1 CpG (cg06171420) mapped to around 5  kb 
upstream of the PCBP3 gene, significantly associated with 
tTau at 5% FDR (Supplementary Table 4, Supplementary 
Fig. 9). The PCBP3 gene encodes the RNA-binding pro-
tein hnRNPE3 (poly(rC) binding protein 3), which regu-
lates alternative splicing of the tau gene [79, 80]. In Down 
syndrome, AD, and other neurodegenerative diseases, 
an abnormal ratio of tau protein isoforms often results 
in aggregated tau, a major component of neurofibrillary 
tangles. In the region-based analysis, the most significant 
CSF Aβ42-associated DMR is located in the promoter of 
the THRB gene (Supplementary Fig. 10), which encodes a 
receptor for the thyroid hormone, previously observed to 
be dysregulated in AD subjects [81–83].

In AD subjects, we identified significantly more DNA 
methylation associated with the CSF biomarkers; a total 
of 112, 4, and 3 CpGs reached 5% FDR in their associa-
tion with Aβ42, pTau181, and tTau, respectively. Among 

the top 10 most significant CpGs associated with Aβ42 
(Table  2), cg24037493 maps to the promoter of the 
SFXN1 gene and is significantly associated with CSF Aβ42 
in AD subjects (Supplementary Fig. 11). SFXN1 encodes 
the mitochondrial serine transporter, which helps to 
maintain mitochondrial iron homeostasis [84]. It has 
been observed that iron levels accumulate in the brains 
of AD subjects and correlate significantly with cogni-
tive decline [85–87]. Similarly, among the top 10 most 
significant pTau181 and tTau-associated CpGs (Table  2), 
cg03037740 maps to the promoter of the RING1 gene 
and is significantly associated with CSF pTau181 (Supple-
mentary Fig. 12). RING1 encodes a protein that interacts 
with the polycomb protein BMI1, which plays a critical 
role in AD pathogenesis. Remarkably, it has been demon-
strated that reduced expression of BMI1 protein alone is 
sufficient to induce both amyloid and tau pathologies in 
both cellular and animal models [88, 89]. The most sig-
nificant promoter DMR associated with Aβ42 is located 
at the TMEM204 gene (Supplementary Fig.  13), which 
encodes a transmembrane protein that functions as a cell 
surface marker for infiltrating microglia in the CNS dur-
ing neuroinflammation [90]. Similarly, the most signifi-
cant promoter DMR associated with pTau181 is located at 
the FBP1 gene (Supplementary Fig.  14), which encodes 
an enzyme that regulates glucose and energy metabo-
lism. It has been observed the expression levels of FBP1 
are reduced in the brains of patients at risk for AD [91, 
92], consistent with our observed hypermethylation at 
the promoter of the FBP1 gene in samples with increased 
levels of pTau181. Taken together, these results demon-
strated that our analysis nominated biologically mean-
ingful DNA methylation loci in the blood associated with 
AD and, importantly, that changes in the different path-
ological processes in the CSF, both before and after the 
clinical diagnosis of AD, are reflected in the epigenome.

In AD samples, the most significant path-
ways that reached 5% FDR are cardiac conduc-
tion (P-value = 2.76 × 10−4, FDR = 2.54 × 10−2) 
and muscle conduction (P-value = 1.42 × 10−4, 
FDR = 2.54 × 10−2), which also achieved 25% FDR in 
CN samples (P-value = 3.58 × 10−4, FDR = 6.58 × 10−2; 
P-value = 5.63 × 10−4, FDR = 7.85 × 10−2). In recent years, 
the interaction between the heart and brain has increas-
ingly been recognized [93]. Cardiovascular disease, even 
subclinical cardiac damage, has been shown to be a signifi-
cant risk factor for dementia [94–97].

In CN samples, interestingly, among the most sig-
nificant pathways enriched with significant CpGs is the 
KEGG pathway “Alzheimer’s disease”, which was curated 
based on recent AD literature and included genes that 
confer AD risks, such as APOE, PSENEN, MAPT, 
CALM3, MME, and others. Also, in CN samples, the 
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most significant pathway is the calcium signaling path-
way (P-value = 2.39 × 10−4, FDR = 9.09 × 10−3), con-
sistent with the calcium hypothesis of AD, which posits 
that dysregulated neuronal calcium homeostasis induces 
impaired synaptic plasticity and defective neurotrans-
mission, promotes accumulation of Aβ and tau proteins, 
and subsequently leads to neuronal apoptosis in the brain 
[98, 99]. Moreover, increased levels of free intracellular 
calcium have also been observed in normal aging, the 
strongest risk factor for AD [100, 101]. The second most 
significant pathway is the regulation of actin cytoskeleton 
(P-value = 1.61 × 10−3, FDR = 2.51 × 10−2), consistent 
with the observation that synapse degeneration is a key 
early feature of AD pathogenesis [102, 103], and stability 
of the actin cytoskeleton is crucial for maintaining func-
tional integrity of the dendritic spines at sites for neuro-
transmission in the brain [104]. These results suggest that 
some of the brain impairment during the early stages of 
the disease (i.e., preclinical) is also reflected in the blood 
epigenome.

Although the majority of the CSF biomarker-associated 
DNAm differed in CN and AD samples, our analyses also 
identified a small number of DMRs that were significantly 
associated with CSF biomarkers in both groups (Supple-
mentary Fig. 2), which could serve as candidate biomark-
ers in future studies of AD progression. Specifically, three 
DMRs, all of which were associated with Aβ42, reached 
Sidak adjusted P-value < 0.05 in both CN and AD sample 
analyses. The first DMR chr15:69,744,390–69,744,763 
is located at the promoter of the RPLP1 gene, which 
encodes a subunit protein of the ribosome. A defective 
ribosomal function is associated with decreased capac-
ity for protein synthesis, reduced number of synapses, 
and has been observed as an early feature of AD preced-
ing neuronal loss [105, 106]. Another noteworthy result 
is two overlapping DMRs significantly associated with 
CSF Aβ42, at chr6:30,130,819–30,131,284 in AD samples 
and chr6:30,130,819–30,131,362 in CN samples, both 
are located in the promoter of the TRIM15 gene, which 
encodes a member of the TRIM protein family involved 
in the ubiquitin system responsible for degrading mis-
folded protein aggregates and plays important roles in 
neurodegenerative diseases [107, 108].

To validate our findings, we studied premortem blood 
DNAm associated with postmortem Braak stage meas-
ured on prefrontal cortex samples in an independent 
dataset, previously described as the London dataset [7]. 
Encouragingly, we found a number of CSF-biomarker-
associated blood DNAm also correlated significantly with 
the Braak stage, which corresponds to neurofibrillary 
tangle tau pathology burden in the brain (Supplemen-
tary Tables 17, 18). In the London dataset, we observed 
a strong blood DNAm to Braak stage association signal 

located at a DMR in the promoter region of the HOXA5 
gene. Interestingly, this locus also showed a significant 
association to CSF pTau181 in the ADNI dataset (Sup-
plementary Table 18, Supplementary Fig. 15). Moreover, 
we also observed a significant correlation between brain 
DNAm and blood DNAm at a subset of 7 CpGs within 
the DMR (Supplementary Fig. 7), as well as a significant 
association between the DMR and downstream target 
gene expression (Supplementary Fig. 8). Consistent with 
previous studies, which discovered the extensive hyper-
methylation in the brain at the HOXA gene clusters sig-
nificantly associated with tau neuropathology [7], our 
study provided strong evidence that these hypermethyl-
ated CpGs can also be observed in the blood epigenome, 
and are significantly associated with pTau181 levels in the 
CSF (Supplementary Table  18). Taken together, these 
results nominate hypermethylation at the HOXA5 locus 
in the blood as a plausible biomarker for tau pathology.

On the other hand, given brain and blood cells originate 
from different developmental cell lineages, previous stud-
ies also suggested that DNA methylation profiles are, by 
and large, distinct between brain and blood [7, 17, 109]. 
Consistent with these previous results, our comparison of 
the significant blood DNAm from this study with signifi-
cant  brain DNAm associated with AD pathology in two 
large recent meta-analyses of postmortem brain tissues [9, 
110] shows only a few overlapping DNAm (3 CpGs and 8 
DMRs), mapped to PRSSL1, LINGO3, SPRED2, HOXA2, 
NR2F1, CPT1B, HOXA5, ZFPM1 genes, and intergenic 
regions, were significant with both blood DNAm-to-CSF 
Aβ42/pTau181 association and brain DNAm-to-brain Aβ/
tau association (Supplementary Tables 4–9). Also, there is 
not any overlap between significant blood DNAm associ-
ated with the CSF AD biomarkers and significant  blood 
DNAm associated with clinical AD from our previous 
meta-analyses of two large clinical AD datasets [17, 111]. 
This is not surprising, given the disconnection between 
brain pathology and clinical diagnosis in AD; it has been 
observed that a substantial proportion of cognitively nor-
mal subjects also have AD pathology in the brain [2021].

This study has several limitations. First, we analyzed 
the methylation levels measured on whole blood, which 
contains a complex mixture of cell types. To reduce con-
founding effects due to different cell types, we included 
estimated cell-type proportions as covariate variables 
in all our analyses. Future studies that utilize single-
cell technology for gene expression and DNAm could 
improve power and shed more light on the particular cell 
types affected at the DNAm loci discovered in this study. 
Second, to study DNAm associated with CSF biomark-
ers in subjects at different stages of the disease (i.e., pre-
clinical or clinical), we separately analyzed samples from 
cognitively normal and AD subjects, which reduced the 
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sample sizes of the analysis datasets considerably. Given 
the modest sample size, we pre-defined a more liberal 
significance threshold (i.e., P-value < 10−5) based on 
previous analyses of blood DNA methylation data [17, 
37, 43], to select a small number of loci that were then 
further prioritized using additional integrative analy-
ses. Future studies with larger sample sizes are needed 
to identify and replicate DNAm loci at more stringent 
significance thresholds. Third, we did not consider MCI 
subjects in this study because there is considerable heter-
ogeneity among MCI subjects, with subjects converting 
to AD at different trajectories [112]. As ADNI is currently 
conducting additional phases of the study, future analyses 
with a larger sample size will make it possible to detect 
DNA methylation to CSF AD biomarker associations in 
different subgroups of MCI subjects. Fourth, although 
women make up about two-thirds of AD patients in 
the general US population [1], our study cohort (which 
had both CSF biomarkers and blood DNAm available 
in ADNI) had a disproportionately lower proportion of 
females in the AD group (37% females in AD group vs. 
51% females in CN group) (Table 1). Therefore, our study 
cohort may not represent a random sample from the gen-
eral population. In all our analyses, we adjusted the vari-
able sex in addition to other covariate variables, so the 
DNAm-to-CSF biomarkers associations we identified are 
independent of sex. Large and diverse community-based 
cohort studies that validate our findings are needed. 
Fifth, as recent autopsy studies revealed that about a 
quarter of CN subjects also shows AD neuropathology in 
the brain [20, 21], the CSF biomarker-associated meth-
ylation we observed in CN subjects could potentially be 
markers of an early feature in AD that precedes clini-
cal diagnosis. Future studies that develop DNAm-based 
prediction models for diagnosing AD and compare their 
performance with state-of-the-art plasma biomarkers of 
AD are needed. Finally, the associations we identified do 
not necessarily reflect causal relationships. Future stud-
ies are needed to establish the causality of the nominated 
DNA methylation markers.

Conclusions
In this study, we leveraged AD biomarkers as quantitative 
outcomes to identify DNAm associated with various AD 
pathology. Our study found a number of novel associa-
tions between blood DNAm and CSF Aβ42, phosphoryl-
ated tau181, and total tau, which are proxy biomarkers of 
AD pathophysiology, demonstrating that changes in vari-
ous pathological processes in the CSF are reflected in the 
blood epigenome. Overall, the CSF biomarker-associated 
DNA methylome is relatively distinct in CN and AD sub-
jects, highlighting the importance of analyzing omics data 
measured on cognitively normal subjects (which includes 

preclinical AD subjects) to identify diagnostic biomark-
ers, and considering disease stages in the development 
and testing of AD treatment strategies. Our analysis of 
blood samples of cognitively normal subjects pointed to 
a number of potential therapeutic targets relevant to the 
treatment of AD, such as calcium channel blockers asso-
ciated with calcium signaling pathway [98], and spine 
stabilizing therapy associated with regulation of actin 
cytoskeleton [104]. Moreover, we found blood DNAm at 
several CpGs in the DMR on the HOXA5 gene are not 
only associated with CSF pTau181, but also tau-pathology 
in the brain, as well as brain DNAm at the same locus in 
an independent dataset, nominating DNAm at this locus 
as a promising candidate AD biomarker. In summary, our 
study provides a valuable resource for future mechanistic 
and biomarker studies in AD.
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phosphorylated tau181 in cognitive normal  (CN) and Alzheimer’s disease 
(AD) subjects. Values highlighted  in red are significant associations with 
P-value < 10-5, FDR < 0.05, or disease by DNAm interaction with P-value < 
0.05. Also highlighted  in red are genes with significant CpGs in the 
promoter regions. Highlights in  yellow indicates overlap with significant 
DNAm in previous literature. The  significant DNAm were compared to 
analysis results of brain samples in Zhang  et al. (2020) (PMID: 33257653) 
and Shireby et al. (2022) (PMID:  36153390). Supplementary Table 7. 
Significant DMRs at 5% Sidak adjusted P-value (z_sidak_p) associated with  
CSF Aβ42 in cognitively normal (CN) subjects and Alzheimer’s disease  (AD) 
subjects. For each DMR, annotations include location of the DMR based 
on  hg19/GRCh37 genomic annotation (chr, start, end), nearby genes 
based on GREAT  (GREAT_annotation), and Illumina gene annotations 
(UCSC_RefGene_Name),  location with respect to CpG islands (Relation_
to_Island), and overlap with  enhancers described in Nasser et al. (2021) 
study  (PMID: 33828297). Direction indicates positive or negative 
association  between DNA methylation at a CpG located within the DMR 
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and CSF biomarker.  Highlights in yellow indicates overlap with significant 
DNAm in previous  literature. Highlights in red indicate gene promoter 
regions mapped with  significant DMRs. The significant DNAm were 
compared to analysis results of  brain samples in Zhang et al. (2020) (PMID: 
33257653) and Shireby et al.  (2022) (PMID: 36153390).   Supplementary 
Table 8. Significant DMRs at 5% Sidak adjusted P-value (z_sidak_p) 
associated with  CSF pTau in cognitively normal (CN) subjects and  
Alzheimer’s disease (AD) subjects. For each DMR, annotations include 
location  of the DMR based on hg19/GRCh37 genomic annotation (chr, 
start, end), nearby  genes based on GREAT (GREAT_annotation) and 
Illumina gene annotations  (UCSC_RefGene_Name), location with respect 
to CpG islands  (Relation_to_Island), and overlap with enhancers 
described in Nasser et al. (2021) study (PMID: 33828297). Direction  
indicates positive or negative association between DNA methylation at a 
CpG  located within the DMR and CSF biomarker. Highlights in yellow 
indicates  overlap with significant DNA methylation loci in previous 
literature. The  significant DNAm were compared to analysis results of 
brain samples in Zhang  et al. (2020) (PMID: 33257653) and Shireby et al. 
(2022) (PMID:  36153390). Supplementary Table 9. Significant DMRs at 
5% Sidak adjusted P-value (z_sidak_p) associated with  CSF total Tau in 
cogntively normal (CN) subjects  and Alzheimer’s disease (AD) subjects. 
For each DMR, annotations include  location of the DMR based on hg19/
GRCh37 genomic annotation (chr, start,  end), nearby genes based on 
GREAT (GREAT_annotation) and Illumina gene annotations  (UCSC_Ref-
Gene_Name), location with respect to CpG islands  (Relation_to_Island), 
and overlap with enhancers described in Nasser et al. (2021) study (PMID: 
33828297). Direction  indicates positive or negative association between 
DNA methylation at a CpG  located within the DMR and CSF biomarker. 
Highlights in yellow indicates  overlap with significant DNA methylation 
loci in previous literature. The  significant DNAm were compared to 
analysis results of brain samples in Zhang  et al. (2020) (PMID: 33257653) 
and Shireby et al. (2022) (PMID:  36153390). Supplmentary Table 10. 
Results of pathway analysis using methylGSA (PMID:  30346483).  In 
cognitively normal (CN)  subjects, at 25% FDR, a total of 13 KEGG pathways 
and 76 Reactome pathways  were enriched with CSF biomarker-associ-
ated CpGs, among which 3 KEGG pathways  also reached 5% FDR. In AD 
samples, at 25% FDR,  10 KEGG pathways and 3 Reactome pathways  were 
enriched with CSF biomarker-associated CpGs, among which 2 Reactome  
pathways also reached 5% FDR. Shown in red are FDR values less than 
0.25,  values of FDR < 0.05 are additionally highlighted in bold. Description 
of  pathways that reached FDR < 0.25 in both CN and AD samples are also  
highlighted in red. Supplementary Table 11. Significant associations 
between CSF biomarker-associated CpGs  and DMRs with target genes in 
blood samples of cognitively normal (CN)  subjects and Alzheimer’s 
disease (AD) subjects. We analyzed CpGs located in  the promoter regions 
and distal regions separately. More specifically, for  CpGs located in the 
promoter region (within ± 2 kb around the transcription  start sites (TSS)), 
we tested the association between CpG methylation with  expression 
levels of the target genes; for CpGs in the distal regions (> 2  kb from TSS), 
we tested associations between CpG methylation with expression  levels 
of ten nearest genes upstream and downstream from the 
CpG.Supplementary 12. A total of 30127 CpG -  mQTL pairs, associated 
with 16 unique CpGs, were significant in both  cognitively normal (CN) 
and Alzheimer’s disease (AD) sample analyses. The  blood mQTLs were 
obtained from the GoDMC database. Definitions for columns  under 
"Blood mQTLs" can be  obtained from README file at http://mqtldb.
godmc.org.uk/downloads.Supplementary Table 13. In cognitively  
normal  (CN) samples, a total of 1518  mQTLs overlapped with the 24 
GWAS nominated LD blocks in Kunkle et al. (2019)  (PMID: 30820047). The 
mQTLs in blood were obtained from the GoDMC database.  Annotations 
for CpGs include location of the CpG based on hg19/GRCh37 genomic  
annotation (Chr, Position), Illumina gene annotation (UCSC_RefGene_
Name), the  type of associated genomic feature (UCSC_RefGene_Group), 
and location with  respect to CpG islands (Relation_to_
Island).Supplementary Table 14. In Alzheimer’s  disease (AD) samples, a 
total of 41 mQTLs overlapped with the 24 GWAS  nominated LD blocks in 
Kunkle et al. (2019) (PMID: 30820047). The mQTLs in  blood were obtained 
from the GoDMC database. Annotations for CpGs include  location of the 
CpG based on hg19/GRCh37 genomic annotation (Chr, Position),  Illumina 

gene annotation (UCSC_RefGene_Name), the type of associated genomic  
feature (UCSC_RefGene_Group), and location with respect to CpG islands  
(Relation_to_Island).Supplementary Table 15. Sensitivity analysis for 
model that adjust cell type  proportions estimated by the IDOL algorithm 
(PMID: 29843789), as implemented  by estimateCellCounts2 function in R 
package FlowSorted.Blood.EPIC. All Aβ42-associated CpGs remained highly 
significant, with P-values  ranging from 1.10 x 10-10 to 1.81 x 10-4. Supple‑
mentary Table 16. Sensitivity analysis for model that adjust cell type  
proportions estimated by the IDOL algorithm (PMID: 29843789), as 
implemented  by estimateCellCounts2 function in R package FlowSorted.
Blood.EPIC. All pTau181-associated CpGs remained highly significant, with 
P-values ranging from 1.39 x 10-8 to 2.92 x 10-3. Supplementary Table 17. 
CpGs with significant associations to both CSF AD biomarkers  (in ADNI 
dataset) and Braak stage (in London dataset). Highlighted in red are  
associations that reached P < 10-5 in ADNI dataset analysis and P < 0.05 in 
London  dataset. Supplementary Table 18. CSF biomarker-associated 
DMRs with significant associations to  both CSF AD biomarkers (in ADNI 
dataset) and brain pathology (Braak stage in  the independent London 
dataset). 

Additional file 2: Supplementary Figure 1. The estimated blood 
cell-type proportions from pre-mortem DNA methylation samples are 
not significantly associated with Braak scores measured on postmortem 
brain samples in the London dataset. Supplementary Figure 2. Overlap 
between significant individual CpGs (A) and significant DMRs (B) in the 
analysis of samples from AD subjects and cognitively normal subjects. 
Abbreviations: AD = Alzheimer’s disease, CN = cognitivelynormal. Sup‑
plementary Figure 3. Overlap between significant individual CpGs (P < 
10-5) and CpGs in significant DMRs (Sidak adjusted P < 0.05) associated 
with CSF biomarkers in (A) Alzheimer’s disease subjects and (B) cognitively 
normal subjects. Supplementary Figure 4. The correlations of estimated 
effect sizes for CpG-to-CSF biomarker associations in cognitively normal 
(CN) subjects vs. those in Alzheimer’s disease (AD) subjects are modest 
and non-significant. Supplementary Figure 5. The P-values for pathway 
enrichment of CSF biomarker-associated DNA methylation in cognitively 
normal (CN) samples are independent of those in Alzheimer’s disease (AD) 
samples. Shown are 95 pathways (Supplementary Table 9) that reached 
FDR < 0.25 in either CN sample analysis or AD sample analysis. Abbrevia-
tions: R = Spearman correlation, p = P-value. Supplementary Figure 6. 
Immune cell type proportions estimated using the EpiDISH (PMID: 
28193155) and the IDOL (labeled as "estimateCell") (PMID: 29843789) 
algorithms are highly concordant. Supplementary Figure 7.  A subset of 
CpGs located in DMR chr7: 27183946 – 27184668 at HOXA5 geneshowed 
both (A) Significant association with Braak stage in London dataset (infor-
mation extracted fromSupplementary Table 18). (B) Significant correlation 
between brain DNAm and blood DNAm. Supplementary Figure 8. DNA 
methylation (DNAm) at the DMR chr7:27183946 - 27184668 is significantly 
correlated with HOXA5 gene expression. The ADNI dataset with matched 
gene expression and DNAm measured on 263 subjects was used for this 
analysis. Residuals were obtained by adjusting DNAm and gene expres-
sion separately by age, sex, immune cell-type proportions, batch effect, 
number of APOE4 alleles, smoking and years of education. Methylation 
level for the DMR was estimated by median methylation level over all 
CpGs mapped within the DMR. Supplementary Figure 9. DNA methyla-
tion at the CpG cg06171420 is significantly associated with CSF total 
tau (TAU) in cognitively normal samples in the ADNI dataset. To remove 
confounding effects from covariate variables, residuals were obtained by 
fitting model log CSF total tau ~ age + methylation plate + sex + APOE4 
+ years of education + smoking history + immune cell-type propor-
tions. Supplementary Figure 10. Aβ42-associated DMR on chromosome 
3. The highlighted CpG next to purple line / purple dot is the most signifi-
cant CpG in the DMR. Supplementary Figure 11. DNA methylation at the 
CpG cg24037493 is significantly associated with CSF Aβ42 in Alzheimer’s 
disease subjects in the ADNI dataset. To remove confounding effects from 
covariate variables, residuals were obtained by fitting model log CSF Aβ42 
~ age + methylation plate + sex + APOE4 + years of education + smok-
ing history + immune cell-type proportions. *An outlier sample with beta 
value of 0.5, log abeta residual of 0.04 was omitted to improve resolution 
of the figure for all other data points. The fitted line represents estimated 
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linear model applied to all data points, including the omitted outlier. 
Robust linear model, which is often used to model data with outlier, 
showed similar P-value for this CpG cg24037493 (P-value = 8.79 x 10-7) 
as the P-value in linear regression (P-value = 1.81 x 10-9). Supplemen‑
tary Figure 12. DNA methylation at the CpG cg03037740 is significantly 
associated with CSF pTau181 in Alzheimer’s disease subjects in the ADNI 
dataset. To remove confounding effects from covariate variables, residuals 
were obtained by fitting model log CSF pTau181 ~ age + methylation plate 
+ sex + APOE4 + years of education + smoking history + immune cell-
type proportions. Supplementary Figure 13. The Aβ42-associated DMR 
on chromosome 16. The highlighted CpG next to purple line / purple dot 
is the most significant CpG in the DMR. Supplementary Figure 14. The 
pTau181-associated DMR on chromosome 9. The highlighted CpG next 
to purple line / purple dot is the most significant CpG in the DMR. Sup‑
plementary Figure 15. The pTau181-associated DMR at chr7: 27183946 
- 27184668 in the ADNI dataset. The highlighted CpG next to purple line / 
purple dot is the most significant CpG in the DMR.
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